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Abstract. We consider the melting behaviour of randomly percolating solids and of porous 
solids in three dimensions. It is argued that the melting temperature T,  reaches zero 
( T , ( p , )  = 0) at the percolation point ( p c )  and varies near p c  as T,  - ( p  - pc) ' ,  where T = 
4.0 is the elastic exponent. Similar behaviour is also predicted for melting in two dimensions, 
It is further proposed that the transition (for dimension d > 2) becomes continuous a tp ,  and 
the amount of discontinuity (e.g. in entropy AS,) decreases monotonically to zero at 
p' where. asymptotically close to p c ,  a mean-field-type argument indicates that AS,,, - 
exp[ - A / ( p  - pc) ' - / ' ] ,  where /? (= 0.4 in three dimensions) is the percolation order-par- 
ameter exponent. 

Extensive studies have been made for cooperative (second order or continuous) tran- 
sitions, like magnetism, on percolating lattices (see e.g. [l]). Detailed studies have also 
been made on mechanical properties (e.g. on elastic or non-linear response or transport 
properties (see e.g. [2]) of percolating or porous solids. 

The melting transition of a solid (or freezing of a liquid) is avery common cooperative 
transition which is basically discontinuous (or first order) in nature [ 3 ] .  Although not 
unanimously accepted it seems that this transition becomes continuous in lower dimen- 
sions (e.g. in two dimensions [4]). The melting properties of (low dimensional) fractals, 
like colloidal aggregates, are thus quite interesting and have been studied recently [ 5 ,  

In view of the above mentioned extensive studies on normal critical phenomena 
and on the mechanical properties of percolating solids, the melting behaviour (or 
the question of thermodynamic stability at finite temperature) of percolating solids 
is expected to be quite intriguing, especially near the percolation point where the 
dimensionality crossover takes place. Studies on discontinuous transitions of binary 
fluids in porous gels [7] might be a typical situation where such melting studies of 
percolating solids would be relevant. Molecular dynamic simulation [8,9] of melting of 
an initially dilute (percolating) solid would be another example. 

In the absence of a satisfactory thermodynamic theory of melting (in three dimen- 
sions) let us consider, following Peierls [lo] and Mermin and Wagner [11], the stability 
of a percolating solid against lattice fluctuations at a finite temperature T.  In passing, we 
note here that a sirnilar Peieris-type argument was also employed by Harowell and 
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Fixman [ 121 for studying shear-induced melting in colloidal systems (though the dimen- 
sional effects in the phase-space integral have not been treated carefully by them). For 
an effective harmonic system, applying the equipartition law to each independent lattice 
(phonon) mode of wavevector q we obtain 

or 

where d denotes the dimension of the solid and qL and qu denote the lower and the upper 
cut-off wavevectors respectively. As one approaches the percolation point, the modulus 
of elasticity Y decreases as ( p  - pJT with z = 4.0 for dimension d = 3 (see Sahimi [2] 
and references therein), giving w!, - ( p  - p c ) ' w ~ ,  CO: - q in the long-wavelength limit. 
It may be mentioned that the elastic percolation point coincides with the (normal) 
percolation point for systems with realistic bond-bending forces. For central force 
systems, the two points differ, although the exponent t is believed to be the same [2]. It 
is obvious from equation (1) that the integrand becomes vulnerable near the lower cut- 
off (qL - 1/L, and the system size L-  =), indicating the Peierls instability of the solid 
with respect to long-wavelength lattice fluctuations. The fluctuations remain bounded 
[lo, 111 ford > 2; and for higher-dimensional systems the temperature (from (1)) above 
which the lattice density correlations are lost approaches zero near the elastic percolation 
point pc as ( p  - pC)'. 

This indicates that the percolating solid will melt at a lower temperature determined 
by the reduced elastic modulus and the melting temperature T,  reduces monotonically 
to zero with the elastic exponent T :  

In fact at pc the dimensionalities cross over to the corresponding fractal values [13]. 
The dimensionality being reduced (at all wavelengths), the above mentioned Peierls 
instability, induced by the long-wavelength lattice fluctuations, become3 even more 
enhanced and the instability temperature drops. For a percolating fractal of size L 
(where M - Ldf )  the average lattice fluctuation at a temperature Tis given by equation 
(1) as PI 

( 3 )  ( U ; ? )  - k B  Tq$ - kB TM(2-d,)ldS 

wheie d f  and 0, denote respectively the fractal and the spectral dimensionality of the 
percolation cluster and z (= d,/d,) denotes the dynamical exponent for diffusive modes 
(e.g. for phonons wq - 4') on the percolation cluster [ 131. Unlike Euclidean objects, for 
which the lattice correlations are spontaneously broken [ 101 for dimension d < 2, fractals 
lose their correlations at any finite temperature if the spectral dimensionality d, (and not 
the fractal dimensionality d,) is less than two [ 5 , 6 ] .  Since for percolating fractals d ,  is 
much less than two [13] ( d ,  = 4), any infinite percolation cluster ( L  -+ a)  would have 
unbounded iatiice fluctuztians at any finite temperature (from equation (3)) and thus 
the melting temperature at p, is expected to be zero. 

Qualitatively speaking, the percolating fractal structure at p = pc being marginally 
stable, it is not expected that T,(p = p : )  is finite and that T,(p) approaches zero 
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discontinuously. Also, on the grounds that the structure is elastically stable at p > pc7  
and hence requires a finite amount of mechanical energy to be destabilized, one can 
argue that the same structure would not melt (unless the dimensions are insufficient to 
arrest the growth of fluctuations) until a finite amount of thermal energy is provided. 
Since the lattice instabilities are induced by the longest-wavelength lattice fluctuations 
and the dimensionality reduces (to its fractal value) at p c  only (for the longest length 
scales), one expects that T,  > 0 forp  > p , .  All of this suggests that T,(pc) = 0 and that 
T,  approaches zero monotonically asp (>p , )  approachesp,. If effective harmonic modes 
become destabilized at the melting point of a solid, as in the self-consistent phonon 
approximation [14], then the melting point T, is related linearly to the elastic modulus, 
and again gives T, (p  3 p c )  - ( p  - pc)' .  However, irreducible anharmonic terms may 
play an important role particularly near the melting point and the exponent for T,  may 
be slightly modified. 

The same kind of picture holds for melting of dilute lattices in two dimensions 
as well. In the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) picture (for a 
review, see Strandburg [4]) melting in two dimensions is a two-stage process-the first 
one is a dislocation unbinding transition from a solid to a hexatic phase and the second 
one is a disclination unbinding transition from a hexatic to an isotropic liquid phase- 
and the whole process is continuous. On the other hand, recent computer simulations 
[4] suggest that melting in 2~ may be either first order or continuous depending on the 
magnitude of the core energy of the defects. Recent results of experimental studies on 
melting in 2~ systems (e.g. that of Armstrong et a1 [15] on monodisperse colloidal 
suspensions) are also equally ambiguous regarding the order of the transition. Whatever 
the order of this transition, the defect pairs are held together by some sort of elastic 
forces. For the second stage (hexatic to liquid), the elastic constants involved are the 
Frank elastic constants and at the melting point, the renormalized coupling (charac- 
terized by these Frank constants) between the defect pairs goes to zero. De  Ville et a1 
(161 found that the elastic response of a system of electrons on the surface of liquid 
helium goes to zero at the predicted dislocation-pair-unbinding temperature T,  as 
predicted by KTHNY theory. We argue that with dilution this aspect of the elasticity of 
the lattice breaks down much more easily and this would lead to a drop of the melting 
temperature with dilution. 

The variation of the amount of discontinuity (for d > 2), for example in the latent 
heat (or the entropy discontinuity AS,) at the melting point, with lattice dilution 
cannot be estimated using the above methods. For this, we use the Lennard-Jones and 
Devonshire (LJD) model of melting transition in this mean-field approximation [ 171, 
where the entropy is calculated from the disorder introduced into the system by the 
disappearance of a particle from a previously occupied lattice site and the simultaneous 
occupation of a previously unoccupied nearest neighbour interstitial (a higher-energy 
state). In the Bragg-Williams picture for the transition, total disorder (liquid phase) 
prevails when the fraction r of the occupied lattice sites equals;, assuming for simplicity 
that the lattice is such that the total number of interstitials is equal to the total number 
of lattice sites. It may be noted from the outset that the existence of a critical point is a 
necessary artefact for this model of melting transition, looked at as an order-disorder 
transition. Nevertheless, we argue that this artefact does not qualitatively affect our 
results since we do not approach criticality except a t p  = p , .  

Let us consider a dilute lattice (quenched disorder) at T = 0 with a fractionp (>p , )  
of its sites occupied. In this case, the interstitials are completely unoccupied. Our 
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argument below rests on the fact that only the infinite cluster, occupying a fraction [13] 
( p  - p,)@ of all the sites (0 = 0.4 when d = 3 ) ,  takes part in the cooperative phenomena 
in this lattice. Now, as thermal energy is supplied by raising the temperature, a fraction 
r of the particles present in the infinite cluster jump into nearby interstitial sites. If each 
of these jumps uses an extra amount of energy w ,  we can write the configurational free 
energy per particle of the infinite cluster at temperature T as [17] 

F ,  = z’r6(6 - r6)w + 2 k B T [ r 6  In r6 + (6 - r6)  ln(6 - r d ) ]  (4) 

where 6 = ( p  - p,)@ and z’ is the coordination number. The equilibrium value of r is 
calculated from the following equation obtained by minimizing the free energy with 
respect to r: 

[1/(2r - l)] ln[r/(l - r ) ]  = 2‘w6/ (2kBT) .  (5  1 
For a fully occupied lattice 6 = 1 and the above equation has only one solution r = 

i corresponding to the liquid state when 4kBT/(z ’w)  > 1. When 4kBT/(z ’w)  < 1, there 
is another solution f < r < 1 which corresponds to the solid phase in this model. 
Obviously, the critical melting transition occurs at a temperature T, = z ’w/ (4kB)  forp = 
1.  However, we argue that for a given p (>pc) the melting transition takes place at a 
temperature T = T,  < T , ( p ) ,  where the degree of ordering in the coexisting liquid phase 
must be less than f and in fact tends to zero as one approaches the percolation threshold. 
This is because the percolating solid at pc is highly tenuous and has quite a few weak 
links (singly connected links), where a single excitation of a site into an interstitial cuts 
the single bond and breaks the infinite cluster into more than one finite cluster and we 
say the lattice melts. This picture is also consistent with our previous argument that 
T,,,(pc) = 0, in the sense that the lattice is elastically so unstable (since it is at the 
breakdown point) that the slightest amount of thermal excitation causes it to fall apart. 
Thus the coexistence value of r at p, must be zero. If we now consider a dilution p 
asymptotically close top,  (but greater), then both the coexistence, r ,  and T,  are much 
less than 1. In this limit the solution of equation (5) is 

r = exp[ - z ’w6/ (2kB T,)]. (6) 

The discontinuity in entropy per particle on melting is given by 

A5, - 26[r In r + (1 - r )  In(1 - r ) ] .  (7) 

Clearly then in this asymptotic limit ( p  + p c  from above) 

AS, - exp[-z’w6/(2kBT,)] - exp[-A/(p - p , ) ‘ - @ ]  

using our previous argument for the variation of T ,  with p.  AS, thus goes to zero as p 
tends to pc (z 9 p). Hence, melting should be continuous at the percolation threshold. 
In fact, for compressible Ising systems, annealed disorder drives the continuous tran- 
sition (of a pure Ising system) to a first-order transition [ H I .  However, the presence of 
quenched dilution drives the transition back to a continuous one because of the dom- 
inance cf quenchcd fluctuation (of the order of t.’’12 where E = 4 - d )  over the annealed 
fluctuation (of the order of E when E < 1) and this in fact has also been observed in 
Monte Carlo simulations [19]. Although the nature of the fluctuation-induced first-order 
transition in compressible Ising systems is quite different from the melting transition, 
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the general trend of the quenched disorder on a first-order transition may be expected 
to be the same, i.e. to reduce the amount of discontinuity. 
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